
Léacslann

Tutorial

Michal Boleslav Měchura
Fiontar, Dublin City University

27 July 2012

1/30

0 INTRODUCTION
Léacslann is a web-based tool for editing collections of structured hierarchical data. You can
use Léacslann to build a dictionary, a terminology database, an encyclopedia or indeed any
collection of entries that have an arbitrary but strict internal structure. Léacslann is particularly
suitable for applications in lexicography, terminography and reference science.

Léacslann is fully customizable. This means that you can tell Léacslann what structure you want
your entries to have, and Léacslann will then give you the tools you need to compose entries that
comply with that structure.

Léacslann is designed to be user-friendly: everything in Léacslann is done by clicking on things
and typing into boxes. Even though you do need to understand a few concepts to use Léacslann
successfully (these are all explained in this tutorial), you don’t need to know or learn any
programming languages.

Léacslann is multilingual. Even though Léacslann’s user interface is in English, Léacslann can
work with texts in any language.

0.1 What’s the big idea?

Figure 0.1: An example entry

Before we start using Léacslann, it is a good idea to spend some time reflecting about structured
data in the abstract. We did say that Léacslann is a tool for editing collections of entries with an
“arbitrary but strict” internal structure. Here’s what we mean by that.

When you look at a dictionary, a terminology database or a similar collection of data, you will
notice that it is made up of entries such as dictionary articles or terminological concepts, and
that these entries all have a structure that looks like a multi-levelled bulleted list of elements.
For example, a dictionary entry such as the one in Figure 0.1 consists of a headword – that’s the

2/30

top-level element – which branches out into one of more elements that represent senses of the
headword. In turn, each sense can have a definition and one or more usage examples. Depending
on the type of your dictionary, this structure can be elaborated further: a headword may need to
have a part-of-speech label, a sense may be allowed to have various kinds of usage labels, a sense
can have one or more translations for the headword, and so on.

It turns out that in the reference sciences (which encompass dictionary writing, terminology
databases, encyclopedias and so on), all entries have such a structure. The details may differ, but
each entry is always a multi-levelled bulleted list of elements. Depending on the type of collection
you are working on, the types of elements allowed may be different (that’s the “arbitrary” bit)
but, once you’ve decided what those elements are, each entry must comply (that’s the “strict”
bit).

Léacslann allows you to specify what kinds of elements you want in your entries, and will then
help you make sure that the entries you create will comply with that specification.

0.2 What’s in this tutorial
Chapter 1 will start introducing Léacslann by showing you how to work with a collection of
entries whose structure has already been specified. We will do this by looking at a simple
monolingual dictionary like the one in Figure 1.

Chapter 2 will gently start taking you under the hood by showing you how the structure of the
simple dictionary from Chapter 1 has been specified in Léacslann, and how you can alter and
elaborate it in various ways. We will also show how to create your own stock from scratch
(“stock” is Léacslann terminology for “a collection of entries”).

Chapter 3 will explain how to use Léacslann’s built-in search features, including its “power
search” feature which allows you to interrogate your data in interesting and complex ways.

Chapter 4 will give you the back-story to Léacslann: how it stores its data, how it can be
customized for enterprise-scale applications, who built Léacslann and why, how it’s likely to be
developed in the future, and under what circumstances you can use it for your own work.

0.3 How to access Léacslann
You can access Léacslann at this address: http://lxln.prettydata.eu/ and log in with your
user name and password. If you do not already have a user name, e-mail valselob@gmail.com
and ask for one.

Once you’ve logged in, you will see three stocks that have been ready-made for you: My English
Dictionary, My Terminology Database and My Collection of Proverbs. All three have been created to
demonstrate various Léacslann features. The first one will be referred to often in this tutorial,
while the remaining two are there for you to explore in your own time.

3/30

1 WORKING WITH DATA IN LÉACSLANN
In this chapter, we will demonstrate the editing features of Léacslann by taking you through a
guided walking tour of one of the ready-made stocks, a simple monolingual dictionary titled My
English Dictionary.

Figure 1.1: Léacslann’s start page

1.1 Editing entries
After logging in to Léacslann, click on the My English Dictionary stock. You will see a screen similar
to the one in Figure 1.2. This shows you the list of headwords currently included in the stock (A).
There are only very few of them at the moment, but rest assured that Léacslann can comfortably
handle hundreds of thousands of entries.

Figure 1.2: The ‘My English Dictionary’ stock, with one entry opened

4/30

Click on a headword, such as busy, and you will see the complete dictionary article on the right.
First of all, take some time to scrutinize what you see on screen. The article starts with a
headword which has a part of speech (a “POS”). The headword is what’s called an element and the
part of speech is what’s called an attribute. The headword element has several sense elements, and
each sense element has one definition element and one or more example elements.

You can change any of the text by clicking on it (B). Click the OK button or press the Enter key on
your keyboard to accept the changes. Click the Cancel link or click away from the text box to
cancel editing.

Notice that each element and each attribute has two parts: a label, such as sense or pos, and a
value (a piece of text you can click to edit). Some elements and attributes have both a label and a
value, while some elements only have a label but no value (such as sense). If you click on a label
(as opposed to a value), the element or attribute will become highlighted and some buttons will
appear in the toolbar at the top (C). You can use these buttons to performs various operations on
the element or attribute.

One thing you can do is move elements up and down. If you select one of the examples in the first
sense of busy, you will be able to move it up and down the list. You can also delete the element
altogether. You can do the same thing with senses: if you click on a sense label, you can move the
sense up and down, while the entire contents of the sense moves with it. You can also delete a
sense (and all its contents).

Notice that some elements can be deleted while others cannot. For example, Léacslann doesn’t
allow you to delete definitions, but does allow you to delete examples. This is because Léacslann
knows that a sense is required to have a definition but that examples are optional. We will learn
in Chapter in 2 how to make Léacslann “know” such things.

Figure 1.3: Adding a new element

5/30

To add an example to a sense, select the sense label (Figure 1.3: A) and a button titled add will
appear in the tool bar at the top (B). Click this button and an option to add an example will
appear. Click this and a new example will be added to the sense (C). The example is empty, so you
need to click the “click here” placeholder to add some text.

You will follow the same procedure to add a new sense to the headword. Select the headword,
then click add and sense. Notice that when a new sense is added, it automatically contains an
(empty) definition. This is because Léacslann knows that a sense must have a definition.

Notice also that Léacslann knows what kinds of “child” elements can be added to which “parent”
element, so the contents of what you see after you click the add button is different based on what
you have highlighted. Léacslann knows that a headword must have one or more senses, that a
sense must have one definition, and that it may (but does not have to) have one or more
examples. Léacslann also knows that some elements cannot have child elements at all, or that
some elements cannot be deleted, and that’s why the add and remove buttons sometimes don’t
appear at all.

By knowing all this, Léacslann only offers you the options that are relevant to the context in
which you are. It also makes sure that the entry you are editing is always compliant with the
structure that has been specified. We will learn in Chapter 2 how to specify structures.

1.2 Saving entries

Figure 1.4: Various elements in the user interface

When you’ve made changes to an entry, you need to save it. To do that, click the save button at
the top right (Figure 1.4: A). Any changes you have made by clicking and typing in the entry itself
will not be saved until you click this button, so it’s very important not to forget to do that! To
remind you, a small red star will appear next to the save button when you have made changes in
the entry that have not been saved yet.

6/30

You will be pleased to hear that Léacslann keeps a record of every version of every entry you’ve
ever saved. To see the complete changelog for an entry, click the history button (B). This will show
you a chronological log of the entry’s history, from the time it was created until the present (the
most recent version is at the top). If you want to undo a change, you can re-instate a previous
version by clicking the restore link next to it. This will return the entry to the state at which it was
at that time.

1.3 Creating new entries
To create a new entry, click the new link at the top (C). A blank entry will be created, which you
must now populate with data. Notice that some elements have been created automatically:
because Léacslann knows that a headword must have a part-of-speech label and at least one
sense, and that a sense must have a definition, it has created these things automatically for you.

Once you have populated the entry, you must save it by clicking the save button. Notice that the
new entry will not appear automatically in the list of headwords on the left. You must click the
List tab to reload the list.

1.4 Deleting entries
Obviously enough, you delete an entry by clicking the delete button at the top right (D). If you’ve
deleted an entry by accident, you can resurrect it by going to its history and clicking the recreate
link next to the most recent version.

This is a good time to explain one important point about entries in Léacslann. Every entry in
Léacslann has a unique number, which you can see in the little text box at top left (E). If you know
the number of an entry, you can go straight to it by typing its number in the box.

Entry numbers in Léacslann are unique, which means that no two entries will ever have the same
number. Even if an entry has been deleted, its number will never be used again for any other
entry.

1.5 Working with references
Before we leave this chapter, we will return briefly to where we left off before we started looking
at saving, creating and deleting entries. Open a headword such as busy and click on the value next
to the part-of-speech label (Figure 1.5). You will notice that this time, you will get a list of values
to choose from instead of a text box. The question to ask is, where do these options come from?

They come from a list which you will find if you click on the pos tab on the left-hand side (Figure
1.6). You will get a list of part-of-speech labels and the interesting thing is that you can edit,
create a delete part-of-speech labels here in the same way as you did with headwords. In fact, as
far as Léacslann cares, part-of-speech labels are entries just as headwords are entries – albeit

7/30

entries with a much simpler structure, they only consist of one element with one value, while
headword entries are much more “branchy”.

Figure 1.5: A list of values to choose from

Figure 1.6: Editing a part-of-speech label

This is where Léacslann takes its list of part-of-speech labels from. Léacslann also knows that the
value of the pos attribute of a headword element is to come from this list. In other words, what we
have here is a (cross-)reference: a link from one entry (the headword) to another entry (the part-
of-speech label).

What you see here is Léacslann’s ability to work with structures where an entry of some category
contains a reference to another entry of a different category (or even to an entry of the same
category). We will show you how to set up such structures in Chapter 2.

8/30

2 SPECIFYING DATA STRUCTURES
In this chapter, we will continue our guided walk though the My English Dictionary stock. We will
show you how to understand and change the structure of entries. You now know that Léacslann
somehow “knows” the structure that each entry is supposed to comply with. So far, we have been
telling you that we will show you later where and how this structure is specified; this is what we
will do now.

2.1 Understanding the structure of entries

Figure 2.1: The structure of ‘headword’ entries

Click on the settings link inside the headword tab on the left-hand side of the screen. You will see a
screen where the structure of headword entries is defined (Figure 2.1). Here is what it says:

• Each entry begins with an element called headword whose value is a string of text.

• Each headword element has an attribute called pos whose value is a reference to an entry of
the pos category. Notice that the attribute is labelled as required, meaning that each
headword must have one.

• Each headword element has one or more elements called sense. Notice that the sense
element is labelled as required (meaning each sense must have one) and repeatable
(meaning a sense may have more than one). Notice also that the sense element has no
value.

• Inside each sense element, two further elements are allowed: definition (which is required
and of which there must be only one) and example (which is optional and of which there
may be more than one). They both have strings of text as their values.

This has explained what the columns Name, Cardinality and Value mean. You can ignore the
remaining columns for now (Preview and Appearance), we will return to them later (in subchapter
2.5).

9/30

If you now click on the settings link next to the pos tab on the left-hand side, you will see that pos
entries have much simpler structure (Figure 2.3): they’re just one element with a text value.
However, the idea is the same: each category has a structure specification and Léacslann makes
sure that entries comply with it.

Figure 2.2: The structure of ‘pos’ entries

2.2 Altering the structure of entries
We will now show you how to modify the structure of headword entries. Let’s say you want to
bilingualize your monolingual English dictionary; in other words, you want to add translations in
another language, such as German or Arabic or Japanese. What you want is to be able to enter, for
each sense, one or more translations of the headword. For that, you need to add a new child
element to the sense element.

Figure 2.3: Creating a new element

Click on the element label of sense (Figure 2.3: A) and several buttons will appear in the tool bar at
the top (B). Click add, then click element. This has created a new element (C) under sense. Click on
the “click here” placeholder and give it a descriptive name, such as translation.

10/30

Let’s assume that you want translations to be optional (as opposed to required) and that you want
to be able to include more than one under a sense. So, in the Cardinality column, leave the optional
setting as it is and change the one only setting to repeatable.

Finally, you want each translation element to contain a string of text. Therefore, change the Value
column from no value to text.

You probably want the translations to appear immediately after the definition and before any
examples. So select the element you have just created (by clicking on its element label) and use the
buttons in the tool bar to move it into a position between definition and example.

Figure 2.4: We have just created a new element

The result should look as it does in Figure 2.4. Finally, save the changes you have just made by
clicking the save button at the top right-hand side. Remember that changes have not been saved
until you have clicked this button, so it is very important not to forget to do this. Just like in the
previous chapter, a small red star next to the save button will remind you that have unsaved
changes.

Figure 2.5: Bilingualizing a dictionary

11/30

Once you have made and saved your changes, you can go back to entry editing by clicking the
headword tab. If you now open a headword, highlight a sense element and click the add button, you
will see that an additional option has appeared to add a translation element (Figure 2.5: A). You
can now add translations to senses and bilingualize your dictionary!

If you want, you can add translations to example elements as well. Follow the same procedure as
above, only make sure that you are adding the new element to example instead of sense. When
deciding what to call this new element, you can call it translation again – Léacslann will not get
confused if you have several elements with the same name. Just make sure that you don’t get
confused!

2.3 Working with different data types
When choosing the data type for your translation element, you may have noticed that there are
more options than just text: there is number, date, time and many others. This shows you that
Léacslann can handle many different data types – not just text – and we’ll show you now what
this can be useful for.

Let’s assume that you want to add frequency data to your dictionary, in other words, data about
how often each word is used. You could get data like this from a corpus, for example.
Additionally, let’s assume that you want your frequency data to be specified at the level of senses:
you know how often each sense of each headword comes up in a corpus and you want to record
these numbers in your dictionary.

Figure 2.6: Adding the ‘freq’ attribute

The best way to go about this is to add an attribute called freq (or some such) to the sense element
(Figure 2.6). Give this attribute the type whole number (a whole number is a number without a
decimal point, for example 467 or 21,855). You may want to specify in the Cardinality column that

12/30

this attribute will be optional (to give yourself the option of not supplying this data for senses
whose frequency is unknown).

When you’ve done this and when you’ve saved your changes, you will now be able to add a freq
attribute to each sense and fill it in with a number (Figure 2.7). If anybody attempts to fill it in
with anything other than a number, Léacslann will display a warning message and will refuse to
accept the value.

Figure 2.7: Entering data into the ‘freq’ attribute

This has shown you how to create attributes and elements that contain numbers. For the sake of
more exercise, let’s take a look at another data type, a data type called yes/no. You can use this to
create elements and attributes whose values can have one of only two values, yes or no. Let’s
assume you want to flag whether each headword is complete or whether it is work in progress.
You can do this by adding to the headword element an attribute called complete or some such, and
giving it the data type yes/no. You will then be able to record for each headword whether it is
complete or not (Figure 2.8). We will leave it up to you create this attribute in your own time if
you want more practice.

In theory, you do not have to bother with data types and always only use text. There is nothing to
stop you from assigning the data type text to the freq and complete attributes, and to record all
data as text. For example, you could express the completion status of a headword by typing the
words “yes” or “no”. However, this is not recommended. There are advantages to telling
Léacslann what type of data is supposed to go into each element and attribute. One advantage is
that Léacslann will make sure that the data you fill in always complies with the data type you had
specified: it will only accept yes or no and nothing else. This ensures consistency. After all,
remember that Léacslann is a tool for working with “arbitrary but strict” structures!

When we start looking at Léacslann’s search features in Chapter 3, we will show you how you can
use data types such as whole number and yes/no to interrogate your data in interesting ways. For

13/30

example, you can search for headwords that are labelled as incomplete, headwords that have a
sense with a frequency higher than a given number, and so on.

Figure 2.8: Entering a value into the ‘complete’ attribute

2.4 Creating structures with references
One thing we didn’t cover in our discussion of data types in the previous subchapter is reference
data types; that is, elements and attributes whose values are references to other entries in the
stock. You already know that the pos attribute of the headword element is such an attribute: it
contains a reference to entry of the pos category.

We will now show how to set such a thing up on your own. As usual, we will do this with an
example. Let’s assume you want to be able to include usage labels in your dictionary: labels such
as formal, informal, archaic, neologism, vulgar and so on. You want to be able to assign these labels to
senses.

The first thing you need to do is create a list of usage labels – and, to be able to do that, you need
to create a category for them. So, click the new link next to the Categories heading on the left-hand
side of your screen and type a descriptive name for the category, for example usage label (Figure
2.9: A).

The internal structure of usage labels will be very simple and will be more or less identical to that
of part-of-speech labels: it’ll just be a single string of text. So, change the data type of the usage
label element from no value to text (Figure 2.10). Don’t forget to save this change by clicking the
save button.

Now that the usage label category has been created, you need to create a few usage label entries.
This is easy to do and you already know how to do this. Click on the usage label tab and add a few

14/30

labels such as formal, informal and whatever else you think you might need in your dictionary
(Figure 2.11). (For more guidance on adding entries, look back at the subchapter 1.3 Editing entries.)

Figure 2.9: Creating a new category

Figure 2.10: The structure of the ‘usage label’ category

Figure 2.11: We have just created a few ‘usage label’ entries

Now that you have a list of usage labels in your stock, the next thing you need to do is update the
structure of headword entries. Click the settings link in the headword tab and highlight the sense
element. Add a new child element to sense, give it a name (such as usage) and change its data type
from no value to reference to usage label. You probably want usage labels to be optional and

15/30

repeatable (so that you can enter none, one or more than one), so change the Cardinality column
accordingly. Last but not least, you probably want these labels to appear the beginning of a sense
rather than at the end, so move the element up to the beginning, right after definition (or even
before it if you prefer). The result should look as in Figure 2.12. Finally, don’t forget to save your
changes.

Figure 2.12: Creating a reference to ‘usage label’ entries from ‘headword’ entries

Figure 2.13: A usage label has been added to a ‘headword’ entry

You have now achieved what you wanted: you can now add usage labels to senses. Try opening a
headword entry and try adding one or more usage labels to a sense (Figure 2.13: A). To review,
what we have done is this: first we have created a new category for usage labels, then we have
populated the category with a few entries, finally we have added an element to the structure of
headword entries whose data type is reference to usage label. This is the process you will follow each
time you want to have an element in your data whose value comes from a closed list of values: a
list of usage labels, part-of-speech labels, language names or whatever else.

16/30

You can follow the same process to set up cross-references between entries of the same type.
Let’s say you want to be able include a cross-reference from a sense of a headword to another
headword. This is easy to do, you simply need to add an element to the end of sense called see also
or some such and set its data type to reference to headword. We will leave that for you to try out in
your own time.

There is one thing we have left unexplained in our discussion. When we were updating the
structure of headword entries to include a reference to usage label, we decided to create an element
rather than an attribute. This begs the question, what is the difference between an element and
attribute? The only difference is that elements can be repeatable while attributes cannot. In other
words, a parent element can have more than one child element of the same name (if you set it as
repeatable) but it can only have one attribute of the same name. The other difference is that
attributes are displayed on the same line of text as the element they belong to, while child
element are displayed on a new (indented) line underneath, which makes for a more compact
layout. So, when choosing between element and attribute, you need to take these things into
consideration. (We are aware that the distinction between elements and attributes is a bit arcane and
unhelpful, and we are considering getting rid of attributes altogether in a future version of Léacslann.)

2.5 Formatting entries

Figure 2.14: The ‘Preview’ and ‘Appearance’ columns

You can congratulate yourself because you have now covered all the difficult bits. You now know
how to create structures in Léacslann and how to populate them with data. All that remains to
look at is formatting settings which you will find in the last two columns (titled Preview and
Appearance) on the settings screen (Figure 2.14).

The Appearance column determines what the value will look like on screen. You probably want
things like headwords and translation equivalents to stand out on screen, while other data
should be less prominent. So it’s a good idea to play around with the formatting options to

17/30

emphasize certain content. On the other hand, it’s an equally good idea not to overdo it because,
when everything is emphasized, nothing is.

The Preview column determines whether the element or attribute will appear as part of the entry
preview that you see in the listing pane in the middle of the screen. You do not have to worry
about this very much because, if you forget to set it to yes for any element or attribute at all,
Léacslann will try to find the most suitable ones automatically and will set them to yes for you.

When entry previews are listed in the listing pane in the middle of the screen, they are sorted
alphabetically based in the contents of the preview. (At the moment, Léacslann sorts using the same
collation for all entries, regardless of language. This means that the alphabetical sorting order may be
slightly incorrect for some languages. We are planning to introduce more sophistication into this in a future
version of Léacslann.)

2.6 A brief look at other stocks
So far in this tutorial we have been looking at the My English Dictionary stock, which has served us
well to demonstrate all the important features of Léacslann. But Léacslann can be used for much
more than just dictionaries, and we will demonstrate that now by giving a brief overview of the
other two stocks that are ready-made for you in Léacslann: My Terminology Database and My
Collection of Proverbs.

2.6.1 My Terminology Database

Figure 2.15: The ‘My Terminology Database’ stock

In lexicography, the usual way to organize entries is to start with a headword and then to
describe all its meanings (called senses). In terminology, the approach is normally the opposite:
you start with a single meaning (called a concept) and then you list off all the terms that express
that concept, in all languages you are interested in. This is how the My Terminology Database stock

18/30

is organized. The top-level element is a concept which contains several language sections. Notice
that a language element contains a reference to a language name from the language category. Each
language element contains one or more terms and, optionally, a definition (which is meant to be
in the same language).

Terminologists are often interested in how concepts relate to one another: whether one concept
is part of another concept (like a processor is part of a computer), whether one concept is a kind of
another concept (like a laptop is a kind of computer), and many other relations. In our simple
terminology stock, this is handled in the metadata section which can optionally appear at the end
of the concept. This contains elements whose values are references to other concepts.

Figure 2.16: Structure of the ‘My Terminology Database’ stock

It would be easy to extend this structure to make it more sophisticated. For example, you could
annotate the terms inside concepts with labels that express whether the term is an abbreviation
or a full-form term, or you could add acceptability labels to terms (recommended, deprecated etc.).
You could also add domain labels to concepts (Computing, Biology, Mathematics etc.).

2.6.2 My Collection of Proverbs

Lexicography and terminology are very conventional applications for software like Léacslann, but
Léacslann can be used for any kind of data that requires an arbitrary but strict structure. The My
Collection of Proverbs stock demonstrates this. Obviously enough, this stock is a collection of
proverbs. Each proverb entry is organized in such a way that it can have one or more versions of
the proverb (but there must be at least one) and can optionally be labelled with one or more
topics. The topics are references to entries of the topic category.

You could extend this to accommodate more data types. For example, if you are collecting
proverbs from informants or from published sources, you could add an attribute to each version
that tells you where that version came from – this would be a reference to entries of a category
called source or some such. You could also label versions geographically or temporally, or you

19/30

could add an element for comments. We will leave these suggestions for you to try out in your
own time if you feel like it.

Figure 2.17: The ‘My Collection of Proverbs’ stock

Figure 2.18: Structure of the ‘My Collection of Proverbs’ stock

2.6.3 Over to you!

As you have no doubt figured out by now, you can create your own stocks in Léacslann by clicking
the Create a new stock link on the start page. This will create a new stock which you must then
populate by creating one or more categories and entries. The stocks you create are yours only
and cannot be seen by other people, so don’t be afraid to experiment.

20/30

3 SEARCHING AND LISTING ENTRIES
As you know by now, Léacslann displays an alphabetical list of entries in the middle of the screen.
Once you’ve built up a large collection of entries in a stock in Léacslann, you will probably find
that it is no longer practicable to wade through a complete list of all entries, and you will be
wanting to filter and search entries based on some criteria. Luckily, Léacslann offers powerful
search features, and we will introduce them in this chapter. The search features can be accessed
by clicking the Search and Power Search links at the top of the screen.

3.1 Fulltext search

Figure 3.1: Fulltext search

The first one (Search) gives access to a basic fulltext search facility which simply searches all text
in all entries (of the given category) for the occurrence of the word or words you have entered.
For example, when you type the word “when”, Léacslann will find all entries where the word
“when” occurs, regardless of where in the entry it is.

If you type more than one word, Léacslann will find entries where the words occur within the
same element or attribute, even if they are not next to each other. For example, when you search
for “act perform”, Léacslann will find the headword act because both these words occur in one of
its definition.

Note that Léacslann searches for whole words, not for parts of words. A search for “when” will
yield results but a search for “whe” will not. Also, note that Léacslann will not find inflected or
similar forms of the word. (We are planning to introduce more sophistication into the fulltext search
feature in a future version of Léacslann, including the ability to search for arbitrary substrings and the
ability to expand queries with inflected forms.)

21/30

3.2 Power search
The power search feature is where the power and flexibility of Léacslann really comes to shine. It
allows you to search for entries based on a more-or-less arbitrary combinations of criteria. You
can search for entries that contain a given substring or value in a particular element or attribute,
for entries that have or do not have an element that fulfils some criteria, or for entries that have
or do not have a particular number of elements that fulfil some criteria.

You can even compose queries that follow the train of references, so you can search for entries
that refer to entries that fulfil some criteria. What’s more, a search query can contain an
unlimited number of criteria, which means that the potential for composing queries in Léacslann
is practically endless. We will introduce the power search feature with a series of examples. All of
the examples in this subchapter will be happening in the My English Dictionary stock.

3.2.1 Searching with text

Let’s say you want to find headword entries where the value of the headword element contains
some text, such as headwords that end with the string “er” (brother, cooker, mother etc.). We’ll take
you there step by step.

Figure 3.2: Building a query, step 1

Go to Power Search and highlight the query element. A button labelled add will appear in the
toolbar at the top. Click it and then click headword. This has added a headword element under
query. What you have done so far is create a query that says: “Find me every entry that contains a
headword element!” If you want, you can click the Search button now to evaluate the query.
Léacslann will return a list if all headword entries because, logically enough, all headword entries
contain a headword element.

22/30

What you want to do now is to elaborate the query such that it says: “Find me every entry that
contains a headword element whose value ends in ‘er’!” To do this, highlight the headword
element, click the add button and then value. A new bullet point will be added underneath
headword. Change comparison from starts with to ends with and replace the “click here” placeholder
with “er”. You have now composed the query you wanted and you can evaluate it by clicking the
Search button.

Figure 3.3: Building a query, step 2

Figure 3.4: Finding definitions that start with ‘when’

You can do searches like these on elements other than headword as well. Let’s say you want to find
headword entries that contain a definition that begins with “when”. This is easy to do. Remove
everything from underneath query, then highlight query, click the add button, then click headword

23/30

» sense » definition. You can figure out the rest from Figure 3.4. This query tells Léacslann: “Find me
every entry that contains a headword element that contains a sense element that contains a
definition element whose value starts with ‘when’!”

3.2.2 Searching with values other than text

You are probably beginning to get the hang of it now. You compose queries by telling Léacslann
to find entries that contains certain elements whose values fulfil certain criteria. For the sake of
practice, we will look at a few more examples now, this time examples that involve values other
than text.

Let’s say you want to list all verbs. To do this, you want to compose a query that says: “Find me all
entries that have a headword element that has, in its pos attribute, the value verb!” This is easy to
do and Figure 3.5 will show you what the query is supposed to look like.

Figure 3.5: Finding verbs

Another query you might want to make is a query based on the freq attribute of sense elements,
which tells you the corpus frequency of the sense (we created this in subchapter 2.3). Let’s say
you want to find entries where at least one sense has a frequency less than a given number.
Figure 3.6 shows you what that query looks like. The query tells Léacslann: “Find me every entry
that has a headword element that has a sense element that has, in its freq attribute, a value less
than or equal to 100!”

24/30

Figure 3.6: Finding entries by frequency

Notice that, because Léacslann knows what data type each element and attribute has, it offers you
the appropriate options in the appropriate place. When the data type is a number, Léacslann
offers options (under comparison) such as less than and greater than. If the data type is text, the
options are begins with, ends with and so on. This is another advantage to specifying the correct
data type for each element and attribute (see subchapter 2.3).

3.2.3 Negative searches

So far, you have been searching for entries that have elements that fulfil certain criteria. In
addition to that, Léacslann allows you to make negative searches, that is, searches for entries that
do not have an element that fulfils certain criteria.

We can show this on an example. Looking back at the query we built to find headwords that are
verbs, we may want to find all headwords that are not verbs. The way to do this is as follows.
Build the query as if you were looking for verbs, and then add an attribute called polarity to
headword and change its value from exists to does not exist. This tells Léacslann: “Find me every
entry where the following does not exist: a headword element that has, in its pos attribute, the
value verb!” (Figure 3.7).

3.2.4 Searches based on number of elements

Another kind of search you can do in Léacslann is search based on the number of elements that
fulfil certain criteria. Let’s say you want to find entries that have more than one sense. Figure 3.8
shows how to build such a query. What this tells Léacslann is this: “Find me every entry where at
least two instances of the following exist: a sense element underneath a headword element!”.

25/30

Figure 3.7: Negative search

Figure 3.8: Search based on number of elements

3.2.5 Searching with references

Léacslann’s power search allows you to make searches that follow the train of references. What
this means in practical terms is that you can search for entries that contain references to entries
that fulfil certain criteria. We will demonstrate this on a slightly convoluted example: let’s
assume you want to find all headwords that have a part of speech whose title begins with “ad”
(this includes both adjectives and adverbs). Figure 3.9 shows such a query. You will notice that
this query contains something called a subquery. The whole query reads like this: “Find me all

26/30

entries that have a headword element that has, in its pos attribute, a reference to a pos entry that
fulfils the following criterion: it contains a pos element whose value starts with ‘ad’!”.

Figure 3.9: Searching with references

Figure 3.10: A query with two criteria

3.2.6 Combinations of criteria

When composing queries, you can combine multiple criteria in a single query. For example, if you
want to find entries that are verbs and that have no translations, you can do it by building a
query with two criteria: one that says “Find me every entry that has a headword element whose
value, in the pos attribute, is verb!” and another one that says “Find me every entry where the

27/30

following does not exist: a headword element that has a sense element that has a translation
element!” Léacslann will return a list of entries that fulfil both criteria. Figure 3.10 shows what
such a query looks like.

28/30

4 LÉACSLANN: THE BACK-STORY
What we have been showing you in this tutorial is only a small part of Léacslann. Léacslann is in
fact a generic platform for building applications such as dictionary writing systems and
terminology databases. The part of Léacslann which you have seen in this tutorial is only one
such application, called the Self-Service application. It is possible to bypass the Self-Service
application completely and to build your own customized application within Léacslann instead.

Deep inside, Léacslann is just a repository for storing structured entries, and a library of functions
for accessing, changing and searching those entries in an application-neutral way. Léacslann was
developed in Fiontar (an Irish-language teaching and research unit in Dublin City University) as a
platform for working with multiple lexical databases, all of which are similar to, but slightly
different from, one another. Fiontar mostly uses Léacslann as a platform for building highly
customized applications; Figure 4.1 is a screenshot of one such application which we have
developed to manage the National Terminology Database for Irish (available to the public at
http://www.focal.ie/).

Figure 4.1: A highly customized Léacslann application

Because Léacslann is a generic platform and because it can accommodate arbitrary data
structures, we thought it would be a good idea to take Léacslann’s potential to its logical
conclusion and to build an application in Léacslann where users could to set up their own data
structures in a user-friendly way, without the need to learn any programming languages or
formal notations. That is the Self-Service application we have demonstrated in this tutorial.

29/30

The Self-Service application is experimental and still in development. You are very welcome to
give it a test drive at the address http://lxln.prettydata.eu/ and we will very much
welcome your feedback. However, please be aware that it is likely to undergo changes in the
future and that we cannot guarantee that your data will survive those changes intact. If you are
considering using Léacslann for a real-world purpose (commercial or non-commercial) rather
than for testing, please contact us to discuss the options.

4.1 Contact details
Michal Boleslav Měchura
E-mail: mechrm@dcu.ie
Postal address: Fiontar, Dublin City University, Dublin 9, Ireland

30/30

	0 Introduction
	0.1 What’s the big idea?
	0.2 What’s in this tutorial
	0.3 How to access Léacslann

	1 Working with data in Léacslann
	1.1 Editing entries
	1.2 Saving entries
	1.3 Creating new entries
	1.4 Deleting entries
	1.5 Working with references

	2 Specifying data structures
	2.1 Understanding the structure of entries
	2.2 Altering the structure of entries
	2.3 Working with different data types
	2.4 Creating structures with references
	2.5 Formatting entries
	2.6 A brief look at other stocks
	2.6.1 My Terminology Database
	2.6.2 My Collection of Proverbs
	2.6.3 Over to you!

	3 Searching and listing entries
	3.1 Fulltext search
	3.2 Power search
	3.2.1 Searching with text
	3.2.2 Searching with values other than text
	3.2.3 Negative searches
	3.2.4 Searches based on number of elements
	3.2.5 Searching with references
	3.2.6 Combinations of criteria

	4 Léacslann: the back-story
	4.1 Contact details

