Highlights

Better than XML: towards a lexicographic markup language
Michal Méchura

e Dictionaries encoded in XML are unnecessarily verbose and complex
due to overuse of purely structural markup.

e Much data in lexicography is inherently headed, but headedness is dif-
ficult to represent in XML.

e JSON and YAML are no better than XML at representing headedness
and at serving the needs of lexicography.

e Two existing languages do provide good support for headed data: XML’s
historical predecessor SGML and a less well-known language called
NVH.

Better than XML: towards a lexicographic markup
language

Michal Méchura?

?Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

This article takes a critical look at how XML is used in lexicography and
asks the question, why do dictionary entries often end up looking so com-
plex when encoded in XML? The main reason for the perceived complexity
of XML-encoded dictionaries is purely structural markup: XML elements
which contain other XML elements instead of human-readable text. The
over-abundance of purely structural markup in lexicography is caused by the
nature of lexicographic content, much of which is inherently headed. XML
has no support for headedness and neither do other commonly used languages
such as JSON and YAML. In this article we propose a number of constraints
and extensions to XML, JSON and YAML which add support for headedness
into these languages.

Keywords: XML, JSON, YAML, Verbose markup, Data models,
Lexicography

1. Introduction: dictionaries and XML

Lexicography is the discipline of creating dictionaries (where by dictio-
naries we mean books, websites and apps where human users look up infor-
mation about words). In modern lexicography, dictionary entries are usually
encoded in XML [1]. Each dictionary entry is typically its own XML docu-
ment, and each such XML document conforms to an XML schema created for
that particular dictionary. An example can be seen in listing 1 below which
shows how a dictionary entry from a bilingual dictionary would typically be
encoded in XML. For comparison, figure 1 shows how the same entry would
eventually be presented to a human user.

Preprint submitted to Data & Knowledge Engineering May 25, 2023

absolutely adv
1. (completely) go hiomlan, go huile agus go hiomlan
I absolutely agree aontaim go huile agus go hiomlan
2. (very) amach is amach, ar fad
he's absolutely brilliant ta se ar fheabhas amach is amach

Figure 1: A human-readable rendering of a dictionary entry encoded in XML

Listing 1: A dictionary entry encoded in XML

<entry>
<headword >absolutely</headword>
<pos>adv</pos>
<sense>
<gloss>completely</gloss>
<translation>go hioml&dn</translation>
<translation>go huile agus go hiomlan</translation>
<exampleContainer >
<example>I absolutely agree</example>
<translation>aontaim go huile agus go hiomldn</translation>
</exampleContainer >
</sense>
<sense>
<gloss>very</gloss>
<translation>amach is amach</translation>
<translation>ar fad</translation>
<exampleContainer >
<example>he’s absolutely brilliant</example>
<translation>t4d sé ar fheabhas amach is amach</translation>
</exampleContainer >
</sense>
</entry>

Notice that the XML encoding is relatively high-level: it encodes the
structure of the entry, not its appearance on screen or on paper. There are
XML elements to indicate where the headword is, where one sense ends and
another begins, and so on. So, we can define dictionary encoding as the ac-
tivity of taking an inventory of lexicographically relevent content items such
as headwords, part-of-speech labels, senses and translations, and expressing
them formally in a language such as XML.

XML is the most commonly used encoding language for dictionaries today.
As lexicography began digitising itself in the late 1990s and early 2000s,

XML seemed like an obvious choice: for example, an early seminal paper
on dictionary encoding [2] extols the virtues of XML and does not even
consider any alternatives — to be sure, no workable alternatives to XML
existed in the early years of digital lexicography. XML was already popular
for text encoding in general, and its underlying tree-like object model fitted in
nicely with pre-existing thinking in theoretical lexicography where dictionary
entries were modelled as tree structures [3].

It is the 2020s now and lexicography has long transitioned from paper
to screens. The focus has moved from retrodigitising old paper-bound dic-
tionaries to producing new born-digital ones. There have been advances in
automation, so that we no longer talk of writing dictionaries but generating
them from data and then post-editing them [4]. There have been quantitative
advances in both scale (how many dictionaries are produced, how large they
are) and speed (how quickly). XML is still with us in this new world.

This article asks whether XML is still fit for the job. Some of the recent
advances in digital lexicography have given rise to scenarios and use cases
which were not there in the early years, such as the need to change dictionary
schemas frequently during the lifetime of a project, or to make dictionaries
more easily processable by machines (as opposed to merely legible to hu-
mans). The purpose of this article is to show that XML makes some of these
tasks unnecessarily difficult, and to look for alternatives.

2. The dark side of XML in lexicography

XML has many properties wich make it a good language for encoding
dictionary entries, for example the fact that XML preserves the order of
elements, or that XML has out-of-the-box support for inline markup. Later
in this article (in section 7) we will give a detailed analysis of those features
of XML which are good for dictionary encoding. At this point, however, we
are going to concentrate on occasions when the use of XML in lexicography
is more hindrance than help.

Since its emergence in the late 1990s' and despite its popularity, XML
has been subject to passionate criticism from many quarters [5]. The usual
objection is that XML is a “verbose” language, which is another way of saying

'The W3C XML recommendation, the de-facto standard for XML, was published in
1998.

that XML documents tend to have an inconveniently high ratio of tags to
content: it takes a lot of tags to encode a little content.

Some of the perceived verbosity of XML is caused by superficial design
decisions in the syntax of XML, in particular the fact that the name of each
element needs to be given twice, first in the opening tag and then again in
the closing tag, which is obviously redundant. This is, however, not the only
reason why XML looks and feels verbose. There are other, less superficial
reasons for the perceived verbosity of XML, reasons which have less to do
with the syntax and more with the underlying data model. Nowhere is this
more apparent than in lexicography, as we will show in the rest of this section.

2.1. Purely structural markup and matryoshkization

We will concentrate here on one less obvious cause of verbosity in XML:
the multi-layered embedding of elements inside other elements inside yet more
elements, a phenomenon we call matryoshkization.? Listing 2, which shows
how a pair of translations would typically be encoded somewhere inside a
bilingual dictionary, demonstrates matryoshkization in practice.

Listing 2: A pair of translations encoded in XML

<translationGroup >
<translationContainer >
<translation>leasi</translation>
<pos>n-masc</pos>
</translationContainer>
<translationContainer >
<translation>athchéirid</translation>
<pos>n-masc</pos>
</translationContainer >
</translationGroup >

The only XML elements here that contain actual human-readable content
are <translation> (= the translation’s wording) and <pos> (= its part
of speech). The remaining XML elements are purely structural, used for
grouping other elements together:

e The <translationContainer> element groups <translation> and
<pos> elements together.

2 A matryoshka is a popular Russian wooden toy in the form of a doll. When the doll is
opened it reveals a smaller doll inside, which in turn has another smaller doll inside, and
SO on.

e The <translationGroup> element groups several <translationContainer>

elements together.

Let us walk ourselves through the hypothetical steps which may have led
a schema designer to designing the schema in this way.

Step 1. In the beginning, the requirement was to encode translations.
This can be done very easily with just one type of element which we can call
<translation>: listing 3.

Listing 3: Two translations

<translation>leasi</translation>
<translation>athchéirii</translation>

Step 2. Then the schema designer realised that we need to encode part-
of-speech labels for each translation, using an element we can call <pos>:
listing 4.

Listing 4: Two translations and two POS labels

<translation>leasi</translation>
<pos>n-masc</pos>
<translation>athchéiritd</translation>
<pos>n-masc</pos>

Step 3. But, to indicate which part-of-speech element belongs to which
translation, the schema designer decides to group each pair under a common
parent. A popular naming convention in lexicography is to call such elements
containers, for example <translationContainer>: see listing 5. This has
introduced one level of matryoshkization into the entry schema: one layer of
purely structural markup.

Listing 5: One layer of purely structural markup

<translationContainer >
<translation>leasi</translation>
<pos>n-masc</pos>
</translationContainer >
<translationContainer >
<translation>athchéirii</translation>
<pos>n-masc</pos>
</translationContainer >

Step 4. At this point, the schema designer notices that the code in which
translations are encoded is quite long. It occurs to him or her that it might
be a good idea to wrap all translation containers inside yet another layer of

purely structural markup, so that it becomes easier to collapse and expand in
an XML editor. In lexicography, when an element’s only purpose is to group
a list of elements of the same type together, a popular naming convention is
to call it a group, for example <translationGroup>: listing 6.

Listing 6: Two layers of purely structural markup

<translationGroup >
<translationContainer >
<translation>leasi</translation>
<pos>n-masc</pos>
</translationContainer>
<translationContainer >
<translation>athchéiriid</translation>
<pos>n-masc</pos>
</translationContainer >
</translationGroup >

We have ended up with two layers of purely structural markup in the entry
schema. The source code of our entries has become difficult for humans to
read and navigate while editing. Most of the tags are purely structural, while
tags which surround actual human-readable content are the minority.

The trouble is, however, that the purely structural markup is not redun-
dant. It (or most of it) is there to encode lexicographically relevant facts,
such as the fact that this part-of-speech label belongs to this translation. The
matryoshkization seems unavoidable, a necessary consequence if one wants to
encode the facts one wants to encode. In the author’s experience, lexicogra-
phers (and more importantly, I'T professionals working in lexicography) often
tacitly accept highly verbose XML as a necessary evil, as an inconvenience
which needs to be accepted because there is no other way.

2.2. Matryoshkization versus your entry editor

A frequent counter-objection is that matryoshkization is not a problem
because editing tools can hide the verbosity from the human lexicographer.
It is, of course, possible in principle to create editorial user interfaces which
do not expose the human lexicographer to the verbosity of the underlying
XML. In practice, however, this is almost never done. All dictionary writing
systems in wide use today, including Lexonomy [6], TLex [7], iLex [8] and
the IDM Entry Editor [9], are basically schema-driven XML editors where
the lexicographer is fully exposed to the verbosity of the purely structural
markup (example in figure 2).

<entry:
#<status=finished</status=
=i <headwordGroup=> </headwordGroup=>
0-i <senses:
=-ii<translationGroup=
B-i#<translationContainer
#<translation>case</translation=

</translationContainer>

F-i<tral ® This element slationContainer=
@ i <tra| © Child elements ationContainers
Add <translationPremodifier
</transl
Add <translation
</sense> Add <translationPostmodifier
</entry> ® Sibling elements

Figure 2: A typical lexicographic XML editor (Lexonomy)

To "hide” the XML from the lexicographer, one needs to develop a cus-
tomised editorial UI which is specific to that particular dictionary (or, more
accurately, to that particular entry schema). This can be a non-trivial soft-
ware development task, especially if one considers the necessity to maintain
the UI throughout the lifetime of the project and to keep it synchronised with
changes to the schema. Most dictionary projects do not have the staff or the
budget for such software development effort. Most dictionary projects sim-
ply procure an off-the-shelf dictionary writing system and customise it with
their own entry schema. Dictionary writing systems typically do not even
allow much more customisation than that. The only widely used dictionary
writing system where the XML can be hidden behind a custom-built entry
editing “widget” is Lexonomy, but this feature is rarely used there — precisely
for the reason that developing and maintaining the widgets is expensive.

Therefore, it is invalid to claim that matryoshkization does not matter
because it can be hidden. Matryoshkization cannot easily be — and rarely is
— hidden from human lexicographers. Matryoshkization is a real and existing
inconvenience on many dictionary projects.

2.3. Matryoshkization versus schema migration

The fact that entries are difficult to read and navigate for human lexi-
cographers is not the only consequence of matryoshkization. Another con-

sequence is that almost every change to the entry schema renders existing
entries invalid.

Let us illustrate that by returning to the hypothetical example of a schema
designer who is in the process of designing an entry schema for a new dic-
tionary project. In step 1, the designer has designed a schema which allows
translations to be encoded in the simplest possible way, using just one type
of element called <translation>: listing 7.

Listing 7: Translations without POS labels

<translation>leasi</translation>
<translation>athchéirii</translation>

The project starts and several hundreds of entries are encoded using this
schema. Then the requirements change and it transpires that we need to
add part-of-speech labels to some (but not all) translations. The schema
designer goes back to the drawing board and follows through with steps 2
and 3: the schema is changed so that translations are now to be encoded in
a <transationContainer> element which can have two child elements, one
<translation> and zero or more <pos>: listing 8.

Listing 8: Translations with optional POS labels

<translationContainer >
<translation>leasi</translation>
</translationContainer >
<translationContainer >
<translation>athchéiriid</translation>
<pos>n-masc</pos>
</translationContainer >

The schema designer has made two changes into the schema: (1) the
new <pos> element type is now an optional sibling of <translation> and
(2) the new <translationContainer> element type has taken the place of
<translation>, “demoting” it to the role of its child. The first change does
not cause pre-existing entries to be invalid, but the second one does. The
consequence is that all previously encoded entries are now invalid as per
the new schema — including, frustratingly, those entries where we are not
planning to add any part-of-speech labels. So, changing the schema was only
half the work: we also need to write a schema migration script to make the
existing entries valid again.

Every time we add new non-structural element types into an entry schema,
such as <pos> in our example, the change usually does not cause pre-existing

entries to be invalid (as long as the new element is optional). But when
we add new purely structural markup into the schema, like we did when we
introduced <translationContainer>, the schema becomes matryoshkized,
all pre-existing entries become invalid and we need to fix that with a schema
migration script. In other words, matryoshkization not only makes entries
verbose, it also makes schema migrations more difficult.

A possible counter-objection is that this (= the necessity to write schema
migration scripts every time we matryoshkize the schema) is unavoidable be-
cause the matryoshkization itself is unavoidable: there is no other way to en-
code what we want to encode than through purely structural markup. To be
sure, this inconvenience is not unique to XML, schema migration scripts are
common everywhere data is managed, in particular in relational databases.
But that is beside the point. Avoidable or unavoidable, matryoshkization
(and the necessity for schema migration scripts) is a hindrance to agility in
the dictionary building process: it prevents the schema designer from making
changes to the schema unreluctantly and frequently, in response to evolving
project requirements.

2.4. Look-ahead matryoshkization

Experienced schema designers are often keen to avoid having to change
the entry schema halfway through a project. For that reason, schema de-
signers often choose to matryoshkize the schema even if there is no need for
it yet, a phenomenon we can call look-ahead matryoshkization. For example,
when designing a schema for encoding translations, the designer may intro-
duce the purely structural element <translationContainer> from the very
start, as in listing 9, even though there is no need for it and a <translation>
element on its own would do. The designer is hoping to future-proof his or
her schema: should a requirement for a <pos> sibling to <translation>
emerge in the future, he or she will be able to introduce it into the schema
without invalidating existing entries and without having to write a schema-
migration script. This is perhaps wise and prudent — but if that requirement
never emerges, then we have ended up with a dictionary full of XML-encoded
entries which are more verbose than they need to be.

Listing 9: Translations with look-ahead matryoshkization

<translationContainer >
<translation>leasi</translation>

</translationContainer >

<translationContainer >

<translation>athchéirii</translation>
</translationContainer >

2.5. Summary: XML in lexicography

Dictionary entries, when encoded in XML, tend to be overly verbose due
to a phenomenon called matryoshkization. Matryoshkization is caused by the
presence of purely structural markup. In addition to verbosity, matryoshk-
ization also causes difficulties during schema updates.

Some degree of matryoshkization and purely structural markup can be
observed in practically every discipline where XML is used, but (arguably)
it is more prevalent in lexicography than anywhere else. So, in the next two
sections, we are going to analyse in more detail the patterns of purely struc-
tural markup which occur often in lexicography and we will ask the question,
what is so special about lexicographic data that makes matryoshkization so
prevalent?

3. Patterns of purely structural markup

We can define purely structural markup as such XML elements which
contain no text nodes as their direct children: all their child nodes are other
XML elements. We have seen how too much structural markup leads to
the phenomenon of matryoshkization, which is a special subcase of the phe-
nomenon of verbosity for which XML is often criticised. Let us now review
the patterns of purely structural markup that commonly occur in lexicog-
raphy. Broadly speaking, there are two patterns: the ‘list” pattern and the
‘headed’ pattern.

3.1. The ‘list” pattern of purely structural markup

Listing 10: Example of the ‘list’ pattern

<translations>

<translationContainer>...</translationContainer>
<translationContainer>...</translationContainer >
<translationContainer>...</translationContainer>

</translations>

The first pattern is where a parent element wraps a sequence of child
elements which are all of the same type. It is there because the designer of
the schema probably thought it useful to group elements of the same type

10

under a common parent element, like in Step 4 of our fictional but realistic
schema design process.

The usefulness of this grouping is debatable. The group thus created does
not seem to represent any lexicographic fact which a lexicographer might
want to communicate to the dictionary’s end-users. The parent wrapper
is almost always unnecessary in the sense that it conveys no information
which could not be inferred: the fact that there exists a list of translations is
obvious from the fact that there is a sequence of <translation> elements in
the entry. Grouping them under a common parent does not contribute any
new information.

Unnecessary grouping of this kind can be found in XML outside lexicog-
raphy too and tends to be advised against in XML styleguides [10]. The
‘list” pattern can almost always be explained away as a bad practice, and the
dictionary schema can be made less complex by simply removing the purely
structural elements.

3.1.1. The ‘headed’ pattern of purely structural markup

Listing 11: Example of the ‘headed’ pattern

<translationContainer >
<translation>athchéirid</translation>
<pos>n-masc</pos>
<usage>formal </usage>
</translationContainer >

The second pattern is where a parent element wraps child elements of
different types, one of which can be considered the “head” and the oth-
ers can be seen as providing additional information about the head. An
example is <translationContainer> which can be said to be headed by
<translation>, while the other children <pos> and <usage> provide addi-
tional information about the head.

Unlike the list pattern, the headed pattern cannot be explained away
as a bad practice. Its purpose is to encode lexicographic facts which the
lexicographer wants to communicate to the end-user, for example the fact
that this <pos> element belongs to this <translation> element. The purely
structural <translationContainer> element is a tool for encoding that fact.

Whenever during the process of designing an entry schema for a dictionary
a requirement arises to encode something which appears to have a “head”
plus a few other elements that provide additional information about the head,

11

the headed pattern of purely structural markup is a popular choice — as it
was for our fictional schema designer in Step 3 above.

Why is the headed pattern of purely structural markup so popular in
lexicography? The reason is that much of lexicographic content inherently is
headed: we will show multiple examples of that in the following section.

4. The headedness of lexicographic data

In XML, at an abstract level, every XML element can be seen as a pair of
two things: a name and a value. The name is what we have in the opening
and closing tags, while everything between the tags is the value which can
be either plain text, or a list of child elements, or a mixture of both (so-called
mixed content), or it can be empty. But the point is that an XML element
always consists of exactly two things: a name and a value, even if the value
is complex.

In lexicography, on the other hand, much of the content we encounter
could more efficiently be modelled as a triple, as a group of three things: a
name, a value, and a list of modifiers containing zero, one or more other such
triples. The name and the value together are the head. Many content objects
in lexicography are inherently headed, but headedness is difficult to model
in XML without purely structural markup. Let us look at some examples of
lexicographic content objects which are headed.

4.1. Translations are headed structures

Listing 12: A typical XML encoding of a translation

<translationContainer >
<translation>athchéirii</translation>
<pos>n-masc</pos>
<usage>formal </usage>
<translationContainer >

Listing 13: The same translation in concise pseudocode

translation: athchéirid
pos: n-masc
usage: formal

In many bilingual dictionaries, translations are given simply as strings
of text with no other information. Such translations are not headed, of
course. But, in an encoding-oriented dictionary (ie. a dictionary which

12

tells you how to express something in a language in which you are not flu-
ent), translations are often decorated with grammatical annotations (part-of-
speech labels) and pragmatic annotations (usage labels). Such translations
are headed: the <translation> element together with its plain-text value
is the head, while the other elements (<pos> and <usage>) are modifiers of
the head. Purely structural markup (in the form of a parent element such as
<translationContainer>) is often used to encode this in XML.

4.2. FExample sentences are headed structures

Listing 14: A typical XML encoding of an example sentence

<exampleContainer >
<example>Ich nehme den Regenschirm mit.</example>
<source>bib-147_12</source>
<translation>I’11l take my umbrella with me.</translation>
</exampleContainer >

Listing 15: The same example sentence in concise pseudocode

example: Ich nehme den Regenschirm mit.
source: bib-147_12
translation: I’11 take my umbrella with me.

In many dictionaries, example sentences are not just strings of text: they
come with additional content such as bibliographical references (to tell us
where the example comes from), usage labels (to tell us, for instance, that this
sentence is colloquial) and translations. In other words, dictionary examples
are headed structures: the <example> element together with its plain-text
value is the head, while the other elements are modifiers of the head. Some
of the modifier elements can be headed structures too: for instance, it is
imaginable that translations could have their own modifiers, as in listing 16.

Listing 16: Example sentences have translations which have usage labels

example: Ich gehe auf Nummer sicher.
translation: I’1l1 play it safe.
usage: informal
translation: I’11 stay on the safe side.
usage: neutral
translation: I will err on the side of caution.
usage: formal

13

4.3. Collocations are headed structures

Listing 17: A typical XML encoding of a collocate

<collocation>
<collocate>make</collocate>
<example>I have made a mistake.</example>
<example>Everybody makes mistakes.</example>
</collocation>

Listing 18: The same collocate in concise pseudocode

collocate: make
example: I have made a mistake.
example: Everybody makes mistakes.

It is becoming common for dictionaries to contain information about the
collocates of the headword: words which often occur together with the head-
word in real-world language use. For instance, inside the entry for the head-
word ‘mistake’ we might find a block of information that tells us that the
headword collocates with the verb ‘make’ (as in ‘to make a mistake’), and
then gives us some additional information about this collocation, such as
some usage labels or a few example sentences. So, in a dictionary entry,
collocations are headed structures: the <collocate> element together with
its plain-text value is the head, while the other elements are modifiers of the
head.

4.4. Senses can be headed structures too

Listing 19: A typical XML encoding of a sense

<sense>
<definition>an institution where you store money</definition>
<translation>banque</translation>
<example>I got a large loan from the bank.</example>

</sense>

Listing 20: The same sense in concise pseudocode

definition: an institution where you store money
translation: banque
example: I got a large loan from the bank.

In lexicography, a dictionary entry is typically subdivided into one or more
senses. A sense is a container for things such as definitions, translations and
examples. Normally, a sense is not a headed structure because there is no

14

obvious “head”: no single element inside the sense where we could say that
all other elements are its modifiers. In XML, senses are practically always
encoded by means of purely structural markup: there is a <sense> element
which has no plain-text children of its own, but has many child elements such
as <definition>, <translation> and <example>.

But is it true that senses are not headed structures? There is a case to be
made that definitions are the heads of senses. A definition says that such-
and-such meaning of the headword exists, and the remaining elements inside
the sense can be understood as providing additional information about that
meaning.

Not all dictionaries contain definitions. But, in those those that do, it
is possible to understand senses as headed structures. In an XML encoding
of senses, the <sense> element is yet another incarnation of the ‘headed’
pattern of structural markup.

4.5. Entries can be headed structures too

Listing 21: A typical XML encoding of an entry

<entry>
<headword >bank<headword>
<partO0fSpeech>noun</part0fSpeech>

<sense>an institution where...</sense>
<sense>a stretch of land...</sense>
</entry>

Listing 22: The same entry in concise pseudocode

headword: bank
part0fSpeech: noun
sense: an institution where...
sense: a stretch of land...

We can perform the same re-analysis on entries as we did on senses. En-
tries do not seem like obviously headed structures: they are simply containers
for various elements such as headwords, part-of-speech labels and senses. But
one of then does stand as a possible candidate for being the head: the head-
word! It is, after all, called a headword for one good reason: its purpose is
to head the entire entry, while the rest of the entry is about the headword.
On that analysis, even entire dictionary entries can be understood as headed
structures, and the very existence of an <entry> element in XML-encoded
dictionaries can be understood as an incarnation of the ‘headed’ pattern of
structural markup, a consequence of matryoshkization.

15

5. How to encode headedness in XML

We have seen in the previous section that headed content structures are
far from uncommon in lexicography: it so happens that much of dictionary
content is inherently headed. And, in the sections before that, we have seen
that to encode headed structures in XML, purely structural markup (more
specifically, the ‘headed’ pattern of purely structural markup) is commonly
used in lexicography, and that this is problematic because it has negative im-
plications on readability and because it causes complications during schema
updates.

The question to ask now is, are there other ways to encode headedness in
XML? Is it possible to encode headed structures in XML without recourse
to purely structural markup? In this section we will evaluate several options,
some obvious and some less so.

5.1. Strategy 1: parentless sequencing

We have said before that the purpose of purely structural markup (in the
‘headed’ pattern) is to group elements together: to indicate which <pos> be-
longs to which <translation> and so on. Theoretically, it might be possible
to achieve the same goal without purely structural markup, by relying only
on the listing order of elements, as in listing 23.

Listing 23: Two headed structures encoded as parentless sequencing

<translation>leasi</translation>
<pos>n-masc</pos>
<translation>athchéiritd</translation>
<pos>n-masc</pos>

In this scenario, we would “know” that each <pos> element belongs to
its nearest preceding sibling <translation> element. The problem with this
approach is that this fact is not encoded explicitly in the XML, and tools
processing this XML in the future may not “know” it as we “know” it now: to
an XML parser, <pos> and <translation> are simply siblings and nothing
else. We would need to program additional logic on top of the XML parser to
make that explicit. So, parentless sequencing defeats the purpose of encoding
entries in XML in the first place: to take facts which are implicit and make
them explicit.

16

5.2. Strategy 2: mixed content

Yet another suggestion is to encode headedness as mixed content. Mixed
content is a strategy used in XML to encode inline markup, a typical example
is tags such as , <i> and in HMTL: see listing 24.

Listing 24: HTML with mixed content
<p>
This is very important.
</p>

To say that an XML element has “mixed content” is another way of
saying that its child nodes are a sequence of text nodes and elements. This
is a good strategy for encoding inline markup. Could it be a good strategy
for encoding headedness, as in listing 257

Listing 25: HTML with mixed content
<translation>
athchéiriua
<pos>n-masc</pos>
<usage>formal </usage>
</translation>

The problem is that there is no formal distinction (to an XML parser)
between the head (= the element’s first child) and the modifiers (= the ele-
ment’s other children). If we ask an XML parser to give us the text of the
<translation> element, it will give is a concatenation of all the text node
descendants, which is the string athchéirid n-masc formal (with whites-
pace collapsed).

The problem becomes more apparent if the head’s value contains inline
markup, like in listing 26. Here, the <example> element has four children:
the text to implement electoral (with a trailing space), followed by the
<h> element, followed by two more elements. An XML parser has no way
of knowing that the first two children are part of the head’s value and the
others are not.

Listing 26: A headed structure, encoded as mixed content, where the head has inline
markup

<example>

to implement electoral <h>reform</h>

<source>EU legislation</source>

<translation>leasd toghchanach a chur i bhfeidhm</translation>
</example >

17

The mixed content strategy is only one step away from purely structural
markup. The one step is to take those children that constitute the head’s
value and wrap them in yet another element, as in listing 27.

Listing 27: XML with purely structural markup

<exampleContainer >
<example>to implement electoral <h>reform</h></example>
<source>EU legislation</source>
<translation>leasd toghchdnach a chur i bhfeidhm</translation>
</exampleContainer>

This is an improvement on the mixed content strategy because the head
value is now explicitly demarcated from the rest. But the downside is that our
schema is now matryoshkized, with all the disadvantages we have identified
above.

5.3. Strategy 3: children as attributes

A simple suggestion that might occur to a schema designer wanting to
avoid purely structural markup is to use XML attributes instead: the head
would be encoded as an XML element and all its children would become its
attributes, as in listing 28.

Listing 28: XML with children as attributes
<translation pos="n-masc" usage="formal">
athchéiria
</translation>
The problem with this suggestion is that it does not scale beyond a few
simple examples. This is because XML attributes come with several incon-
venient limitations:

e Attribute names have to be unique, meaning that there can never be,
for example, two pos attributes or two usage attributes in an element.

e Attribute values are plain text with no structure. So, it is impossible
for an attribute to have its own attributes, or any other kind of child
nodes, or to contain a list of values. In other words, an XML attribute
is similar to an XML element in that it is a name-value pair, but with
the additional limitation that the value must be plain text.

18

5.4. Strategy 4: heads as attributes

he other way around to encode values as attributes with a pre-agreed
name such as value. Children are then encoded as normal XML elements,
as in listing 29.

Listing 29: XML with heads as attributes

<translation value="athchéirid">
<pos value="n-masc"/>
<usage value="formal"/>
</translation>

This encodes headedness successfully but has an even larger problem than
the previous strategy: now all values must be plain text, in-line markup is
impossible everywhere.

5.5. Conclusion: headedness in XML

The conclusion for this section is that even though it is possible to find
strategies in XML to avoid purely structural markup and/or to represent
headedness, each strategy comes with its own trade-offs. These trade-offs
may or may not be acceptable to the schema designer depending on the
requirements of the project, for example whether in-line markup is needed
or not.

6. How to encode headedness in other serialization languages

Lexicography abounds in headed structures but the markup language we
use in lexicography most often, XML, was never designed for it and can only
accommodate it awkwardly. This is unfortunate. But can we perhaps find
another markup language to use in lexicography instead of XML, one that can
encode headedness more gracefully? In this section we will evaluate JSON
and YAML as currently popular alternatives to XML, we will also look at
SGML as XML’s historical predecessor, and we will also look at one less well-
known language called NVH. In each case we will ask whether the language
is able to encode headed structures without purely structural markup, and
if not, how the language would need to change to support headedness.

19

6.1. Headedness in SGML

XML’s historical predecessor was SGML [11, 12]. Invented primarily as
a text markup language, SGML was® more complex than XML, but this
complexity enabled many markup minimisation features which, in ret-
rospect, made SGML into a language which supported headedness.

One of SGML’s markup minimisation features was the ability to omit
closing tags. Early versions of the HTML standard had a similar feature.
So, it was possible to write code like in listing 30.

Listing 30: SGML with minimised markup

<translation>athchéiriad
<pos>n-masc

The parser would implicitly “assume” the missing closing tags from its
knowledge of the document schema. If the schema says that the <translation>
and <pos> elements can only have text content and no child elements, then
obviously they must be siblings and the parser will read the code as if the
closing tags where there, like in listing 31.

Listing 31: SGML without minimised markup

<translation>athchéiriid</translation>
<pos>n-masc</pos>

This features of SGML made it possible to write less verbose code, but
it still does not turn SGML into a headedness-supporting language. The
markup minimisation feature which does turn SGML into such a language is
something called implicit elements. In SGML, is was possible the specify in
the document schema that certain element tags can left out altogether, even
though the parser would still “assume” them to be there. Let’s demonstrate
that on an example where we take a matryoshkized XML fragment and re-
encode it in SGML. We start with a fragment like in listing 32.

Listing 32: SGML with all elements explicit

<translation>
<value>athchéirii</value>
<pos>n-masc</pos>
<usage >formal </usage>
<translation>

3We are talking about SGML in the past tense, as if SGML no longer existed. This is
of course not true, SGML is still exists. The past tense here is only a reflection of the fact
that SGML is rarely used anymore, at least for new projects.

20

Then, in the document schema, we specify that the <value> element is
implicit. It now becomes possible to leave its opening and closing tags out,
as in listing 33.

Listing 33: SGML with an implicit element
<translation>
athchéirid
<pos>n-masc</pos>
<usage>formal </usage>
<translation>

This looks similar to our attempt to encode headedness in XML through
mixed content, but the trick is that this is not mixed content. When parsing
this code fragment, the SGML parser will understand from the schema that

1. <translation> is not allowed to have any text content, and
2. <translation> is required to have as its first child an element called
<value> which is required to have text content.

These facts will trigger the SGML parser into interpreting the code as if
the <value> element were actually there, like in the previous code sample.
All this means that SGML could, in principle, be used in lexicography to
encode headed structures in a such a way that schema migration does not
cause problems. Let’s assume we start with a simple entry schema where
translations are encoded like in listing 34.

Listing 34: This SGML fragment validates in both schemas

<translation>
athchéiria
<translation>

If we then update the schema such that

1. <translation> is no longer allowed to contain text content, and
2. <translation> is required to a contain an implicit element called
<value> (as well other optional children such as <pos> and <usage>)

then the original entries are still parsed as valid: the SGML parser “as-
sumes” the implicit element to be there. We can matryoshkize the schema
without having to matryoshkize the data, and no schema migration scripts
are needed.

To the author’s knowledge, however, this property of SGML was never
taken advantage of in lexicography. Lexicography began digitising itself at

21

a time when SGML had already peaked in popularity and XML was seen as
its successor. And, to be sure, the flexibility of SGML came at a cost, as
SGML was computationally hard to implement: all the markup minimisation
features made it difficult to write parsers for SGML. XML evolved out of
SGML to solve precisely that problem, as a subset of SGML which is more
easily processable by machines. In its evolution from SGML to XML, the
language gained machine processability and became easy to adopt, but lost
support for headedness and gained on verbosity.

6.2. Headedness in JSON

As a serialisation format for data, JSON [13, 14] is often claimed to
be more easily human-readable than XML. JSON is definitely less verbose
than XML, mainly because the names of objects do not have to be repeated
at the end of every object, which makes JSON significantly faster for (un-
compressed) transmission than XML [15]. Listing 35 shows how an entry
fragment might be encoded in JSON.

Listing 35: How a translation might be encoded in JSON

{

"translationContainer": {
"translation: "athchéiria",
"pos": "n-masc",

"usage": "formal"

}

}

Apart from this, however, JSON has the same problem as XML: it does
not support headed structures. The code in listing 35 is JSON’s equivalent
of matryoshkization and purely structural markup: translationContainer
is the purely structural element because it is an object which contains no
literal text as its immediate child, all its children are other objects.

None of the strategies discussed for XML in section 5 have equivalents
in JSON. The parentless sequencing strategy is impossible in JSON because
JSON requires the names inside an object to be unique: listing 36 is illegal
in JSON. The mixed content stragegy is not an option either because JSON
does not allow mixing literal values with name-value pairs: listing 37 is also
illegal in JSON. The only way to represent mixed content in JSON is to
use array syntax [...] which comes with its own share of purely structural
markup. And finally, the remaining two options discussed for XML which

22

make use of attributes have no equivalents in JSON because there is no such
thing as attributes in JSON.

Listing 36: Parentless sequencing (illegal in JSON)

{
"translation": "leasu",
"pos": "n-masc",
"translation": "athchéirid",
"pos": "n-masc"

¥

Listing 37: Mixed content (illegal in JSON)

"translation: {
"athchéiria",
"pos": "n-masc",
"usage": "formal"

We have seen how, in XML, every element is basically a name-value pair,
where the value can be a literal value or a list of children. In JSON, every
member is similarly a name-value pair. The name appears before the colon
: and the value after it, where the value can be either a literal or a complex
object. The underlying object model of JSON is therefore similar to that
of XML. When we ignore the superficial differences in the syntax of the
two languages, there are only two relevant differences in their object models
(after [16] section 2.3): data elements in JSON are unordered whereas in
XML they are ordered, and the keys inside a JSON object must have unique
names whereas in XML the children of a parent are not required to have
unique names.

In theory, it would be possible to extend the JSON language so that name-
value pairs can optionally become triples consisting of a name, a value and
an object containing the children. Listing 38 shows what a data fragment
might look like when encoded in such an extension of JSON. This would
introduce built-in support for headedness into JSON. This is, however, only
a hypothetical speculation as no such JSON extension exists.

Listing 38: A hypothetical extension of JSON to support headedness

"translation: "athchéiria" {
"pos": "n-masc",
"usage": "formal"

}

23

6.3. Headedness in YAML

A popular serialisation language which is even less verbose than JSON
is YAML [17]. YAML was designed deliberately to be as human-readable
and human-writable as possible. Where other languages use (curly, pointy...)
brackets and quotation marks to demarcate where things begins and end,
YAML uses whitespace and indentation. If data encoded in JSON look and
feel like source code in JavaScript or some other C-style language, then data
encoded in YAML looks and feels like source code in Python. Listing 39
shows how an entry fragment might be encoded in YAML.

Listing 39: How a translation might be encoded in YAML

translationContainer:
translation: athchéiriad
pos: n-masc
usage: formal

This is undoubtedly as “unverbose” as we can get from any serialisa-
tion language. But, crucially, this still does not encode the fact that the
string athchéirid is the head of the whole structure. Same as in the JSON
example, translationContainer is a purely structural element.

Like XML and JSON, YAML has no support for headedness, and the only
way to encode headed structures is either to matryoshkize the data through
purely structural elements, or to accept some other trade-off. The strategy
of parentless sequencing and the mixed content strategy are not possible in
YAML (without introducing their own purely structural markup), and the
two strategies based in attributes are not possible either because there is no
concept of attributes in YAML.

As a thought experiment, how would the syntax of YAML need to change
to be able to accommodate headed structures? It would have to be possible
for an object to have both a literal value and a list of children, like in listing
40.

Listing 40: A hypothetical extension of YAML to support headedness

translation: athchéirid
pos: n-masc
usage: formal

This is illegal in YAML, but it is in fact the same syntax we have used
throughout this article to illustrate headed structures. An extension like this
would turn YAML into a serialization language which supports headedness.

24

6.4. Headedness in NVH

NVH (Name-Value Hierarchy)? is a less well-known markup language de-
veloped by computational lexicographers® in Masaryk University and in Lex-
ical Computing, a company which makes software for lexicography. NVH
is used by Lexical Computing in-house during the semi-automated produc-
tion of dictionaries [4], an agile process where frequent schema updates are
common.

The syntax of NVH is similar to YAML, so that an NVH document may (if
certain constraints are met) also be a valid a YAML document. Additionally,
NVH differs from YAML in that it implemens the proposal suggested in the
previous section: an element in NVH is allowed to have both a literal value
and a list of children, like in listing 40. Listing 41 shows what a complete
dictionary entry looks like when encoded in NVH.

NVH is the only markup language in existence designed specifically with
headedness in mind. Unlike SGML, which supports headedness at the ex-
pense of increased parsing complexity, NVH documents are as simple to parse
as YAML or JSON. This is because NVH is built not on the notion of name-
value pairs but on the notion of name-value-children triples.

Listing 41: An entire entry encoded in NVH

headword: house
pos: mnoun
phon: haus
soundfile: house.mp3
sense:
definition: a built structure with walls and a roof for living in
label: Construction
translation: higa
pos: feminineNoun
translation: dom
pos: masculineNoun
label: informal
collocation: a large house
translation: velika hisa
example: We bought a large house.
translation: Kupili smo veliko hiSo.

‘https://www.namevaluehierarchy.org/
5The author of this article is one of the creators of NVH.

25

7. Desiderata for a serialization language in lexicography

If we were to create an ideal markup language for lexicography, what
features should the language have (in addition to support for headedness)?
Which features of XML, SGML, JSON, YAML and NVH would we like to
bring into this new language? This section will list some criteria and evaluate
each language against them.

7.1. Avoid purely structural markup

Avoiding purely structural markup is important in lexicography for hu-
man readability and as a form of preparedness for future schema updates.

e XML encourages purely structural markup. To avoid it in XML, one
has to resort to strategies which come with trade-offs (see section 5).

e SGML makes it possible to avoid purely structural markup thanks to
its markup minimization features. However, this brings an increased
compexity for parsing.

e In JSON and YAML, purely structural markup is practically unavoid-
able — although the extension proposed in sections 6.1 and 6.2, which
would add headedness support to the languages, would also remove the
need for most purely structural markup.

e N'VH makes it relatively easy to avoid purely structural markup thanks
to its built-in support for headedness.

7.2. Headedness

Support for headedness is obviously a high-priority requirement for a lex-
icographic markup language, given how prevalent headedness is dictionaries.

e XML has no built-in support for headedness, except when using one
of the attributes-based strategies, which however comes at the expense
of the ability to represent in-line markup on the either head element or
on the child elements.

e SGML has built-in support for headedness if the encoding makes use
of SGML’s markup minimization features. This comes at the expense
of easy machine processability: parsing SGML is a complex task.

26

e JSON and YAML have no built-in support for headedness either.
The languages would need to be extended along the lines suggested in
sections 6.1 and 6.2 in order to support headedness.

e NVH has built-support for headedness, but at the expense or mak-
ing in-inline markup difficult: same as XML when combined with
attributes-based strategies.

7.3. Ezplicit listing order

One requirement which is important in lexicography is preserving order.
The order in which items are listed needs to fixed, remembered during pars-
ing, and guaranteed to survive every parsing-serialisation roundtrip. Having
things listed in a given order is almost always an implicit requirement when
encoding lexicographic data.

e XML, SGML and NVH meet this requirent perfectly. The “order
matters” principle is part of the design of the languages.

e In JSON and YAML, the children of a parent are not in any explicit
order. For example, in JSON, every object is basically a collection
of key-value pairs, and this collection is unordered. In practice JSON
and YAML parsers and serializers often do preserve the order of items,
but this is not guaranteed. The only way to fix the order of items is
to encode them as an array (in JSON) or as a list (in YAML), which
brings its own share of purely structural markup.

7.4. Non-unique child names

It is common in lexicography that a content object has multiple children of
the same kind, for example an entry contains several senses, a sense contains
several translations. To encode this without purely structural markup, the
language has to allow the children of an element to have non-unique names.

e In XML and SGML, non-unique child names are allowed. It is pos-
sible, for example, for an <entry> element to have multiple children
named <sense>, or for a <sense> element to have multiple children
named <translation>.

27

e In JSON and YAML, non-unique child names are not allowed, and
so code fragments such as listings 42 and 43 would be invalid in JSON
and YAML. To remodel it into legal JSON or YAML one would need
to resort to some form of purely structural markup, for example using
array syntax [...] in JSON.

e NVH, in spite of its superficial similarity to YAML, does allow non-
unique child names. So a code fragment like listing 43, altough invalid
in YAML, is valid in NVH.

Listing 42: Invalid JSON with non-unique child names

{
"sense": {
"gloss": "completely",
"translation": "go hiomlan",
"translation": "go huile agus go hiomléan"
X
}

Listing 43: Invalid YAML (but valid NVH) with non-unique child names

sense:
gloss: completely
translation: go hiomlé&n
translation: go huile agus go hiomléan

7.5. Inline markup

One of XML’s strong points is its good support for inline markup. Here
XML shows its origins as a markup language (as opposed to a serialisation
language). This heritage proved itself useful in the early stages of digitisation
in lexicography when dictionary entries were treated rather like small docu-
ments, consisting of running text which needed to be marked up. Dictionary
encoding used to be like text encoding in the early stages of its digitisation,
and XML’s support for inline markup was useful in that scenario.

Since then, dictionaries have evolved away from the text encoding paradigm.
Dictionary entries have ceased to look like running text with markup and have
started to look more like structured data records. Consequently, the need
for inline markup has diminished. Inline markup is now used fairly rarely
in lexicography. The only application where inline markup plays a role (in

28

some dictionaries) is to mark up the occurrences of headwords (and some-
times collocates) inside example sentences. In other wors, in-line markup
is a low-priority requirement in lexicography: other requirements, such as
headedness or an explicit listing order, are more important.

e XML and SGML have good built-in support for inline markup, as
explained.

e In JSON and YAML, inline markup is difficult to encode as neither
language has any built-in support for it. One must either matryoshkize
the data (turn a string into an array of strings and objects) or invent
a custom-built formalism (using some form of markdown, or stand-off
markup based on start and end indexes).

e NVH has no built-in support for inline markup in the current form of
the language, but there is a convention for representing in-line markup
through stand-off annotation, as show in listing 44. The @ character
identifies the element as in-line markup of its parent, and the index
number after it identifies which occurence of the substring is supposed
to be marked up (in case there are multiple occurences). This conven-
tion may become part of the specification of NVH in the future.

Listing 44: NVH with inline markup

example: We bought a larger house in the village.
headwordHighlight: house @1
collocateHighlight: larger @1
lemma: large
pos: adj

7.6. Easily machine-processable

A data language is easily machine processable if it is relatively easy to
write parsers for it, if the language is (in some sense of the word) simple. This
implies a subjective judgment, but the following is probably a fair summary.

e XML (arguably) is easily machine-processable if one ignores optional
complications such as namespaces.

e SGML (arguably) is not easily machine-processable due to its markup
minimization features which require the parser to have access to the
schema and to perform inference during parsing in order to infer closing
tags and implicit elements.

29

e JSON, YAML and NVH (arguably) are easily machine-processable.

7.7. Human-friendly

We have discussed in section 2.2 how human-friendliness is important
in lexicography because human editors are usually exposed to the full ver-
bosity of the markup language. A data language is human-friendly to the
extent that it is human-readable and human-writeable. What that actu-
ally means may differ from human to human, but in the author’s opinion,
a human-friendly language should (1) have as little syntactic punctuation
(such as pointy brackets, curly brackets) as possible and (2) indicate struc-
ture by something highly visual, such as whitespace and indentation, instead
of paired brackets.

e XML and SGML (arguably) possess a low degree of human-friendliness
due to the fact that they contain a lot of syntactic punctuation (al-
though some of it can be minimized in SGML) and because structure
is indicated by paired tags, which may not correspond to whitespacing
and indentation.

e JSON scores better than XML and SGML on human-friendliness be-
cause it contains less syntactic punctuation, but worse than YAML
and NVH because it still does contain some syntactic punctuation and
because structure is indicated by paired prackets.

¢ YAML and NVH are practically the same in this respect and both
possess a high degree of human friendliness. There is almost no syn-
tactic punctuation, and structure is indicated through indentation.

7.8. Summary: the perfect lexicographic markup language does not exist

This section has listed off a lexicographic “wishlist” of criteria for an ideal
serialization language, and evaluated briefly how each language meets or does
not meet the criteria. The results are summarized in table 1 for XML and
in table 2 for the remaining languages.

As we have seen, there is not a single data language in existence today
which would tick all the boxes on the wishlist, although NVH and SGML
come close. An interesting conclusion is that XML, in spite of being widely
used in lexicography, is not the best possible fit for the requirements of the
field, due mainly to its lack of support for headedness.

30

XML XML! XML? XML3 XML*
Avoid PSM no yes yes yes yes
Headedness no no no yes yes
Explicit listing order yes yes yes no yes
Non-unique child names yes yes yes no yes
Inline markup yes yes yes no no
Easily machine-processable yes” no? no? yes? yes?
Human-friendly no? no? no? no? no?

Table 1: A lexicographic scorecard for XML. “XML” means conventional XML with ma-
tryoshkization; “XML'” is XML with parentless sequencing; “XML?2” is XML with mixed
content; “XML3” is XML with children as attributes; “XML*” is XML with heads as
attributes. Answers that assume a subjective judgment are labelled with a question mark.

“PSM” stands for “purely structural markup”.

SGML JSON JSON* YAML YAML* NVH
Avoid PSM yes no yes no yes yes
Headedness yes no yes no yes yes
Explicit listing order yes no no no no yes
Non-unique child names yes no no no no yes
Inline markup yes no no no no no?
Easily machine-processable no? yes? yes? yes? yes? yes?
Human-friendly no? no? no?’ yes? yes? yes?

Table 2: A lexicographic scorecard for languages other than XML. “JSONX” and
“YAML*” means JSON and YAML with extensions suggested in sections 6.1 and 6.2.
Answers that assume a subjective judgment are labelled with a question mark. “PSM”

stands for “purely structural markup”.

31

8. Conclusion

This article has challenged the age-old orthodoxy in computational lexi-
cography that dictionary data is best encoded in XML. XML is widely used
in lexicography but, on closer inspection, it turns out not to be the best fit
for its requirements. We have analysed what lexicography actually needs
from a markup language, with special attention to the inherent headedness
of much of lexicographic content. We have seen how widely used languages
such as XML, JSON and YAML have no built-in support for headedness,
and how attemting to represent headed data in these languages results in an
undesirable proliferation of matryoshkization and purely structural markup.

A schema designer who wishes to avoid purely structural markup has a
number of options. Within XML, there are strategies for avoiding struc-
tural markup, but these come with trade-offs which may or may not be
acceptable. Outside XML, we have shown that other well-known languages,
namely JSON and YAML, are no better than XML at meeting the needs of
lexicography. The conclusion is that the needs of lexicography would best be
met either by a return to SGML, or by an adoption of the less well-known
language NVH.

References

[1] W3C, Extensible Markup Language (XML) 1.0 (2008).
URL https://www.w3.org/TR/2008/REC-xm1-20081126/

[2] N. Ide, A. Kilgarriff, L. Romary, A formal model of dictionary structure
and content, in: Proceedings of the 9th Euralex International Congress,
Stuttgart, Germany, 2000, pp. 113-126.

[3] H. E. Wiegand, Der Begriff der Mikrostruktur: Geschichte, Probleme,
Perspektiven, in: Worterbiicher: Ein internationales Handbuch zur
Lexikographie, de Gruyter, Berlin, 1989, pp. 409-462.

[4] M. Jakubicek, M. Méchura, V. Kovar, P. Rychly, Practical Post-Editing
Lexicography with Lexonomy and Sketch Engine, presentation at XVIII
EURALEX International Congress (Jul. 2018).

[5] K. J. Carlson, The Case Against XML (2007).
URL http://www.krisandsusanna.com/Documents/the-case-against-xml.pdf

32

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Méchura, Introducing Lexonomy: an open-source dictionary writ-
ing and publishing system, Electronic lexicography in the 21st century:
Proceedings of eLex 2017 conference, Leiden, 2017, pp. 662-679.

URL https://michmech.github.io/pdf/elex2017.pdf

TshwaneDJe, TLex Suite: Dictionary Compilation Software.
URL https://tshwanedje.com/tshwanelex/

J. Erlandsen, iLEX, a general system for traditional dictionaries on
paper and adaptive electronic lexical resources, in: Proceedings of
the 14th EURALEX international congress, Fryske Akademy, Leeuwar-
den/Ljouwert, The Netherlands, 2010, pp. 306-306.

IDM, DPS User Manual.
URL https://dps.cw.idm.fr/

U. Ogbuji, Considering container elements: When to use elements to
wrap structures of other elements., in: Principles of XML design, IBM,
2004.

URL https://www.ibm.com/developerworks/library/x-contain/index.html

ISO, Standard Generalized Markup Language (SGML) (1986).
URL https://wuw.iso.org/standard/16387 .html

C. F. Goldfarb, Y. Rubinsky, The SGML handbook, Clarendon Press
and Oxford University Press, Oxford and New York, 1990.

ECMA, The JSON data interchange syntax (2017).

URL http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

ISO/IEC, The JSON data interchange syntax (2017).
URL https://wuw.iso.org/standard/71616.html

N. Nurseitov, M. Paulson, R. Reynolds, C. Izurieta, Comparison of
JSON and XML data interchange formats: a case study., 22nd Interna-
tional Conference on Computer Applications in Industry and Engineer-
ing 9 (2009) 157-162.

P. Bourhis, J. L. Reutter, D. Vrgo¢, JSON: Data model
and query languages, Information Systems 89 (Mar. 2020).
d0i:10.1016/j.i5.2019.101478.

33

[17) YAML, YAML Ain’t Markup Language (YAML) version 1.2, Revision
1.2.2 (2021).
URL https://yaml.org/spec/1.2.2/

34

